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Generating moment equations in the Doi model of liquid-crystalline polymers
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Department of Materials, Institute of Polymers, ETH Zu¨rich, and Swiss FIT Rheocenter, CH-8092 Zu¨rich, Switzerland
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We present a self-consistent method for deriving moment equations for kinetic models of polymer dynamics.
The Doi model@J. Polym. Sci., Polym. Phys. Ed.19, 229 ~1981!# of liquid-crystalline polymers with the
Onsager excluded-volume potential is considered as an example. To lowest order, this method amounts to a
simple effective potential different from the Maier-Saupe form. Analytical results are presented which indicate
that this effective potential provides a better approximation to the Onsager potential than the Maier-Saupe
potential. Corrections to the effective potential are obtained.@S1063-651X~99!09511-2#

PACS number~s!: 83.10.2y, 05.20.Dd
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I. INTRODUCTION

Kinetic theory is a powerful analytical tool for describin
the dynamics of dilute and semidilute solutions of polym
in terms of a diffusion equation for the particle distributio
function or, equivalently, by the full system of moment equ
tions. In general, the moment system has to be truncate
some level. The problem of the ‘‘closure approximation’’
very well-known in the literature, and an enormous amo
of suggestions has been analyzed in the case where
moment couples only to a few higher-order moments. Ho
ever, for some kinetic equations, the time evolution of ea
moment couples to an infinite set of higher moments, so
further analytical work is often precluded since closure
proximations are less studied for this case. In this paper
present a simple method that allows us to derive mom
equations with a finite coupling valid for a wide class
kinetic equations.

In order to be specific, we consider a particularly impo
tant example: the Doi theory of liquid-crystalline polyme
~LCP!, subject to the Onsager excluded-volume potential@1#.
As it is well-known, in this model each moment equati
depends on an infinite set of higher-order moments. In
original work @1#, this problem was treated in two step
First, the Onsager potential was replaced by a different, p
nomenological potential of the Maier-Saupe type@2#, which
gives rise to a coupling to the next higher moment only.
the second step, the ‘‘decoupling’’ approximation was us
to solve the resulting closure problem for the second m
ment. Subsequent extensive studies were focused on
provements of the second step@3–6#. At the same time, we
are not aware of improvements on the first step and clos
approximations are limited to the Maier-Saupe potential
to now. However, it would be desirable to deal with the tr
Onsager potential, not only because it becomes exact in
limit of low concentrations of perfectly rigid rodlike mol
ecules, but also because it contains no phenomenologica
rameters and therefore gives more quantitative predictio
In addition, the Onsager potential is preferred in the study
the influence of flow on the isotropic-nematic transitio
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sian Academy of Sciences, Krasnoyarsk, Russia.
PRE 601063-651X/99/60~5!/5783~5!/$15.00
s

-
at

t
ach
-
h
at
-
e

nt

-

e

e-

d
-

m-

re
p

he

a-
s.
f

,

since it gives a clear-cut prediction of the range of coex
ence of the equilibrium isotropic and nematic phase, both
stationary@7# and nonstationary@8# flows. The method that
we propose in this work leads to an approximation of t
Onsager potential, which, to the lowest order, is at the sa
time as simple as the Maier-Saupe potential but also close
the true Onsager potential. Moreover, corrections to this
proximation can be obtained in a systematic manner.

II. DOI MODEL

Let c(u;t) be the probability distribution function for a
rigid rodlike polymer molecule to be oriented parallel to t
unit vector u. The time evolution ofc in the presence of
flow and the Onsager excluded-volume potential was gi
by Doi @1# and may be written as

] tc52R•@u3~k•uc!#1R•D̂ rcRS dA

dc~u! D . ~1!

HereR5u3]/]u is the rotational operator,]/]u the gradi-
ent on the unit sphere,k the gradient of the velocity,D̂ r the
rotational diffusivity,d/dc the functional derivative, andA
5A01A1 the free energy functional per molecule divided
kBT,

A05 ln n211^ ln c~u!&, ~2a!

A15
U

2
^^A12~u•w!2&&. ~2b!

U52bL2n is the reduced excluded-volume, 2b andL are the
diameter and the length of the rodlike polymeric molecul
respectively, andn is the number of molecules per unit vo
ume. Here and below we use the following notatio
for averages: ^ f (u)&5* f (u)c(u)du, and ^^ f (u,w)&&
5** f (u,w)c(u)c(w)du dw. A0 describes the loss of en
tropy with molecular alignment, whileA1 expresses the On
sager free energy of steric interaction in the second vi
approximation@9#. Following Doi and Edwards@10#, the ro-
tational diffusivity is approximated by

D̂ r'D̄ r5D rF 4

p
^^A12~u•w!2&&G22

, ~3!s-
5783 © 1999 The American Physical Society
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whereD r , the rotational diffusion coefficient for a rod in a
isotropic, semidilute solution of like rods, is related to t
rotational diffusion constant for a dilute solution,D r0, by
D r5cDr0(nL)22 with an empirical coefficientc. Nonlinear-
ity of Eq. ~1! in c brought about by the potential~2b! reflects
the mean-field nature of the Onsager theory of the exclud
volume effect. The self-consistent potential, identified
Doi @10#, is related to the free energy of interaction,V(u)
5kBTdA1 /dc(u). Various phases of the LCP are conv
niently described by the order parameterS5^uu2(1/3)1&,
where1 is the unit tensor. It is reasonable therefore to lo
for approximate formulations of the dynamics in terms of t
order parameter alone. However, as mentioned above,
time evolution equation forS couples to an infinite numbe
of moments ofc. In the derivation given by Doi, this diffi-
culty was circumvented by replacing the Onsager poten
~2b! by a different, phenomenological expression of t
Maier-Saupe type@2#

A1
MS5a02

a1

2
US:S, ~4!

wherea0 anda1 are parameters independent ofc. A further
separate treatment of the diffusivity~3! is also necessary. A
compact presentation of the entire development is given
Doi and Edwards@10#. The Doi model with the Maier-Saup
potential~4! constitutes the basic kinetic model of LCP us
by many authors for analytical studies to derive equations
the order parameter. As is well-known, the kinetic equat
~1! with the potential~4! does not give a closed equation f
the order parameter but contains also the higher-order
ment^uuuu&, and therefore constitutes a further problem
closure. The original Doi approach was based on the dec
pling approximation for the fourth-order moments ofc in
terms ofS. Improvements on the decoupling approximati
are currently under active research@5#.

III. GENERATING MOMENT EQUATIONS

In this paper we demonstrate that a different se
consistent treatment of the kinetic equation~1! is possible.
Modifications concern only the relaxational part of Eq.~1!,
specifically, the excluded-volume potential~2b! and the dif-
fusivity ~3!, and therefore we consider the casek50 in the
sequel to simplify notations. Specifically, we employ the c
mulant expansion of the potential~2b! and the diffusivity~3!.
The leading term of this expansion results in an effect
potential that differs from the Maier-Saupe potential~4!, and
which contains a nonpolynomial dependence on the o
parameterS.

In the second virial approximation, the free energy of
teractionA1 can be written asA15(n/2)^^b(u,w)&&. If only
excluded-volume interactions are present, the second v
coefficientb corresponding to the Onsager expression~2b! is
of the form b(u,w)5b@(u•w)2#, with b(x)52bL2A12x.
Specifically, expandingb(x) in a Taylor series and inter
changing summation and averaging in this expansion, we
^^b(x)&&5(n50

` an^^x
n&&, where an are numerical coeffi-

cients. Each averagê̂xn&& can be represented in terms
cumulantŝ ^xk&&c of orderk<n. Resummation of the serie
leads to
d-
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^^b~x!&&5b~^^x&&!1 (
m51

`
1

m! S ^^x2&&c

2 D m

b (2m)~^^x&&!

1•••, ~5!

whereb (2m) is the 2mth derivative ofb and ellipses denote
terms including third or higher-order cumulants as facto
Therefore, the functionalA1 ~2b! can be split asA15A1

(1)

1B, whereA1
(1) is the free energy, corresponding to the to

neglect of second and higher-order cumulants in each term
the expansion,

A1
(1)5

U

2
A12^uu&:^uu&. ~6!

In terms of the order parameterS, A1
(1) may be rewritten as

A1
(1)5(U/A6)A12(3/2)S:S. By the mean value theorem,

is easy to see thatA1
(1) gives an upper bound toA1 , A1

<A1
(1) , for the present case of excluded-volume interactio

The functionalB contains the higher-order cumulants. Whi
all powers of the second cumulants are displayed in Eq.~5!,
in general it is nota priori clear whether it is more importan
to keep powers of the second cumulant or higher cumula
However, we generally expect the linear term in the seco
order cumulant to be most important. The correspond
term m51 in Eq. ~5!, A1

(2)5(1/2)^^x2&&cb9(^^x&&), gives
the first nonvanishing contribution toB,

A1
(2)52

U

16
^^@~u•w!22^uu&:^uu&#2&&~12^uu&:^uu&!23/2.

~7!

Keeping only the firstN cumulants in the expansion~5!, the
functional~2b! is approximated by nonlinear functions of th
first 2N moments ofc. Inserting this approximation in the
time evolution equation~1! amounts to an approximation o
the self-consistent Onsager potentialV in terms of a polyno-
mial of order 2N in u but with nonlinear coefficients. In this
approximation, the time evolution of the 2nth moment con-
tains only the first (2n12N)th moments. With this, momen
equations can be generated that approach the original e
tions in a systematic way, thereby containing only a fin
number of moments at each stage.

IV. TESTING THE APPROXIMATION

Clearly, the above procedure is most valuable if the fi
terms,A1

(1) , etc., already provide a good approximation
the full expressionA1. While the general validity ofA1

(1) as
a good approximation toA1 is a rather delicate problem, i
should be mentioned that it is so at least in two limitin
cases. Namely, for the isotropic state, the value ofA1

(1) dif-
fers fromA1 for less than 5%, while in the fully ordered sta
the approximation~6! becomes exact. Moreover, on the su
manifold of distribution functions of the form

ca~u!5
a

4p sinha
cosh~au•n!, ~8!

wheren is an arbitrary unit vector, and 0<a<`, the func-
tional A1

(1) turns out to approximateA1 very well for all
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values of the parametera between the isotropic state,a
50, and the fully ordered state,a5`. To show this, we plot
in Fig. 1 the functionsA1(a), A1

(1)(a), and A1
(1)(a)

1A1
(2)(a), what result upon inserting the ansatz~8! into Eqs.

~2b!, ~6!, and ~7!, respectively. Note thatA1(a), A1
(1)(a),

andA1
(2)(a) can be calculated analytically. For convenien

we plot the functions against the scalar order parameter,
fined asS5A(3/2)S:S. IncludingA1

(2) does not only reduce
the error of the approximate value ofA1 in the isotropic state
to 1.5%, but improves the accuracy of the approximat
over the whole range ofS. For comparison, we included i
Fig. 1 also the free energyA1

MS, corresponding to the Maier
Saupe expression~4!, thereby choosing the undetermine
constant so that the limit of the fully ordered state is match
correctly. Note, however, that in any caseA1

MS decays as-
ymptotically like 1/a, for a@1, whereasA1 and A1

(1) be-
have like 1/Aa in this regime. We included in Fig. 1 also th
derivative of the above functions, since they are related
the self-consistent potentialV. Figure 1 shows that also th
derivative ofA1

(1) provides a good approximation to the d
rivative of A1, with correct limiting behavior near the isotro
pic and fully ordered state. Note that including the first c
rection A1

(2) yields excellent agreement to the true Onsa
prediction. The Maier-Saupe potential captures the main
tures but, besides an undetermined constant, shows
wrong behavior near the fully ordered state. The ansatz~8!,
originally proposed by Onsager@9#, is known to approximate
the equilibrium distribution very well. Therefore, we co
clude thatA1

(1) represents a good approximation toA1, at
least on a representative subset of distribution functions.

FIG. 1. Free energy of excluded-volume interaction for distrib
tion functions~8! plotted against the scalar order parameterS(a).
From top to bottom: approximationA1

(1) ~6!, with first correction
A1

(1)1A1
(2) ~7!, true Onsager expressionA1 ~2b!, and the Maier-

Saupe free energyA1
MS ~4!, when the limitsS50 and S51 are

matched. In the inset, the derivative of the above functions is sh
as a function ofS(a). The order of the curves from top to bottom
is the same.
,
e-

n

d

to

-
r
a-
he

V. THERMODYNAMIC CONSISTENCY

It is worth mentioning that the presentation given so
can easily be cast into the recently developed formalism
nonequilibrium thermodynamics, called general equation
the nonequilibrium reversible-irreversible coupling~GE-
NERIC! @11,12#. In the absence of potential forces, the e
ample of rigid dumbbells, which are equivalent to the mod
of rigid rods, is formulated within the GENERIC formalism
in Ref. @13#. The mean field potentials considered above c
be included in a straightforward manner, if we recognize t
A152S1, where S1 is the entropic contribution per mol
ecule to the free energy of interaction divided bykB . For-
mulating the original model as well as the approximatio
within the GENERIC formalism guarantees that our tre
ment is in accordance with the principles of nonequilibriu
thermodynamics. This becomes especially important if
present model is considered in nonisothermal situations.
example, the structure of the GENERIC formalism requi
the polymeric contribution to the elastic stress to be

sab
e 53nkBTSab2nkBTK S u3RdS1

dc D
a

ubL . ~9!

Equation ~9! agrees with the result of Doi@10#, obtained
upon varying the free energy functional.

VI. LOWEST ORDER APPROXIMATION

In the sequel, we will adopt the lowest order approxim
tion A5A(1)5A01A1

(1) , whereA1
(1) is given by Eq.~6!, and

A0 is given by Eq.~2a!. This amounts to neglect of all highe
order correlations in Eq.~5!, or, equivalently, settingB50.
SubstitutingA(1) instead ofA into Eq. ~1!, we derive

] tc5R•D̂ rFRc2cRS Uuu:^uu&

2A12^uu&:^uu&
D G . ~10!

It is now possible to identify the self-consistent potential

V(1)~u!5S UkBT

2 D 12uu:^uu&

A12^uu&:^uu&
, ~11!

which can be compared to the expression obtained from
serting the Maier-Saupe free energy~4! into Eq. ~1!,

VMS~u!5a22a1UkBTuu:^uu&, ~12!

where a2 is an arbitrary constant. The normalized equili
rium solutions to Eq.~10! areceq

(1)5Z21 exp@2V(1)/kBT#.
The rotational diffusivity~3! is related to the free energ

of interaction, sinceD̄ r5D r@8A1 /(pU)#22. Substituting
A15A1

(1) gives

D̄ r
(1)5~3p2/32!D r@12~3/2!S:S#21. ~13!

The diffusion coefficientD̄ r
(1) ~13! is positive in the entire

physically meaningful range of the order parameterS. Ex-
pression~13! should be compared with the Doi phenomen
logical result,

-

n
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D̄ rD5D r@12~3/2!S:S#22. ~14!

While we have not found an argument which of the tw
powers,21 or 22, is more consistent, it should be stress
that our derivation of the diffusion coefficient does not ne
any further assumptions or adjustable parameters, while
derivation of Eq.~14! @1,10# requires the matching ofD̄ r ,
respectivelyA1

MS, in both the isotropic and the fully ordere
state. Due to its relation toA1

(1) , the diffusion coefficient

D̄ r
(1) ~13! has a correct limit in the fully ordered sta

(D r /D̄ r
(1)50 as soon asS:S52/3 in the ordered state!, while

the opposite limit of the isotropic state (D̄ r5D r) is matched
within 8%. Again, the first correction~7! reduces the error in
this limit to less than 3%.

If we adopt~3! and approximateD̄ r by D̄ r
(1) ~13!, the time

evolution of the order parameterS can be derived from Eq
~10! by the so-called Prager procedure,

] tS526D̄ r
(1)S16D̄ r

(1) U8

A12~3/2!S:S
~S•^uu&2S:^uuuu&!,

~15!

with U85U/A6. This expression differs from the result o
Doi @1# not only in the diffusion coefficient and in the re
duced excluded-volumeU due to the undetermined consta
in the Maier-Saupe potential~12!, but contains a nonpolyno
mial dependence on the order parameterS, which becomes
important in the nematic state.

VII. CONCLUSION

We have presented a systematic procedure that allow
derive approximate moment equations for the Doi mode
LCP, which contain only a finite number of higher ord
moments. The first approximation for the Onsager exclud
volume interaction results in an effective potential~11! pro-
portional to uu, but different from the Maier-Saupe form
~12! and without free parameters. We find indications th
Eq. ~11! approximates the true Onsager potential better t
the Maier-Saupe potential. For higher accuracy, the first c
rection seems to be the most important contribution.
these approximations are in accordance with nonequilibr
thermodynamics.

Note that we have not addressed the problem of solv
the resulting kinetic equations or ‘‘closing’’ the mome
equations. This work is currently under preparation. Nev
theless, for comparing Eq.~15! to the corresponding equa
tion with the Maier-Saupe potential, we follow Refs.@1,10#
and consider the decoupling approximationS:^uuuu&
5S:^uu&^uu&. If the order parameter is assumed to be of
form Sab5S(t)@nanb2dab#, the relaxation equation for th
scalar parameterS is found to be as follows:

] tS526D̄ r
(1)]A(1)~S,U8!

]S
, ~16a!
d
d
he

to
f
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A(1)~S,U8!5
S2

2
2

U8

9
A12S2S 12

3S

2
12S2D

2
U8

6
arcsin~S!, ~16b!

whereU85U/A6. Due to a nonpolynomial character of th
functionA(1) ~16b!, the relaxation equation~16a! differs for-
mally from the Landau-de Gennes counterpart derived
Doi for the Maier-Saupe potential. Expansion of the functi
~16b! around S50 reproduces the result of Doi for th
Maier-Saupe potential, subject to a renormalization of
strength of the excluded-volume potential, and a differen
in the coefficient in front of theS4 term. Moreover, the re-
laxation implied byA(1) ~16b! is qualitatively similar to the
one given by Doi result and distinguishes the same th
regimes. ForU,U1 , A(1) has only one minimum atS50,
so that the system finally becomes isotropic. ForU1,U
,U2, a second local minimum occurs. The system eit
becomes isotropic or nematic depending on the initial va
of S. Finally, for U.U2, the isotropic state becomes un
stable and the system always approaches a nematic sta

Due to the undetermined constanta1 in the Maier-Saupe
potential~12!, the Doi theory predicts the valuesU1 andU2
also in terms ofa1. On the contrary, the self-consistent p
tential ~11! contains no free parameters, so thatU1

531/4A8/(A321)'6.22 andU253A6'7.34 may directly
be compared to the values in the Onsager theoryU158.38
andU2510.67. However, the values of the order parame
S151/4 andS251/2 atU1 respectivelyU2 in the Doi theory
do not depend ona1 and can therefore be compared to t
values predicted by Eq.~11!: S15(A321)/2'0.37 andS2

51/A2'0.71.
In Fig. 2, the equilibrium order parameterSeq is shown as

a function ofn/n2. The lower solid line shows the predictio

FIG. 2. Equilibrium order parameterSeq as a function ofn/n2.
The figure shows the behavior due to the Maier-Saupe pote
~17!, lower curve, and the solution of~18! corresponding toA(1),
upper curve, in the decoupling approximation. Solid circles indic
the order parameter for the true Onsager potential in the static
~from @15#!.
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of the Doi theory, whereas the upper solid line correspo
to the approximation~11!. For the Maier-Saupe potentia
SeqÞ0 is given by

Seq5
1

4
1

3

4
A12

8n2

3n
. ~17!

For the free energy~16b!, Seq is given implicitly as the so-
lution to the algebraic equation

11Seq22Seq
2

A12Seq
2

5
n2

n
. ~18!

For large values ofn/n2, the solution~18! approaches the
valueSeq51 and asymptotically behaves like the solution
the Doi theorySeq;12n2 /n, for largen. Note that the de-
coupling approximation corrects the asymptotic behavior
the Maier-Saupe potential near the fully ordered state.

As is well-known, the detailed form of the interactio
potential can have a significant effect on the behavior of
order parameter in the nematic phase@14#. Specifically, the
amount of order at the transition is known to be mu
s

f

f

e

smaller in the Maier-Saupe theory than in the Onsa
model. For comparison, we included in Fig. 2 the values
the order parameter obtained from minimizing the true O
sager free energy numerically@15#, where n2 now corre-
sponds to the true nematic transition. Although the analy
of the phase transitions via the dynamical approach is
fected by the use of the decoupling approximation, the p
diction of the self-consistent approach is much closer to
true Onsager values than is the Maier-Saupe potential.
nally, it should be mentioned that approximations to the O
sager potential such as Eqs.~6! and ~7! can also be used in
the case of potential flows, following the approach of Thir
malai @7# without additional assumptions.

To summarize, we have developed a direct approach
the Doi model with the Onsager potential. We have dem
strated that the resulting kinetic equation has much in co
mon with the Doi model with the phenomenological Maie
Saupe potential. Corrections to the approximation develo
here can be found in a systematic way from Eqs.~5!–~7! by
taking into account higher order correlations. The appro
to derive self-consistent moment equations is applicable
other kinetic equations which can be cast into the form~1!.
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