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Generating moment equations in the Doi model of liquid-crystalline polymers
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We present a self-consistent method for deriving moment equations for kinetic models of polymer dynamics.
The Doi model[J. Polym. Sci., Polym. Phys. EAS9, 229 (1981)] of liquid-crystalline polymers with the
Onsager excluded-volume potential is considered as an example. To lowest order, this method amounts to a
simple effective potential different from the Maier-Saupe form. Analytical results are presented which indicate
that this effective potential provides a better approximation to the Onsager potential than the Maier-Saupe
potential. Corrections to the effective potential are obtaif8d063-651X%99)09511-7

PACS numbds): 83.10-y, 05.20.Dd

[. INTRODUCTION since it gives a clear-cut prediction of the range of coexist-
ence of the equilibrium isotropic and nematic phase, both in
Kinetic theory is a powerful analytical tool for describing stationary[7] and nonstationary8] flows. The method that
the dynamics of dilute and semidilute solutions of polymerswe propose in this work leads to an approximation of the
in terms of a diffusion equation for the particle distribution Onsager potential, which, to the lowest order, is at the same
function or, equivalently, by the full system of moment equa-time as simple as the Maier-Saupe potential but also closer to
tions. In general, the moment system has to be truncated #te true Onsager potential. Moreover, corrections to this ap-
some level. The problem of the “closure approximation” is Proximation can be obtained in a systematic manner.
very well-known in the literature, and an enormous amount
of suggestions has been analyzed in the case where each [l. DOl MODEL
moment couples only to a few higher-order moments. How- . S .
ever, for some kinetic equations, the time evolution of each, L€t #(u;t) be the probability distribution function for a

moment couples to an infinite set of higher moments, so thdt9id rodlike polymer molecule to be oriented parallel to the

further analytical work is often precluded since closure apUnit vectoru. The time evolution ofy in the presence of

proximations are less studied for this case. In this paper Wn%OW and the Onsager excluded-volume potential was given
present a simple method that allows us to derive momenf?y DOI[1] and may be written as
equations with a finite coupling valid for a wide class of SA
kinetic equations. = —R-[UX (Kk-Up)]+R- ﬁng(_)_ )

In order to be specific, we consider a particularly impor- oy(u)
tant example: the Doi theory of liquid-crystalline polymers . . .
(LCP), subject to the Onsager excluded-volume poteftikl Here R=uXd/du is the rotational operatory Ju theAgradl-
As it is well-known, in this model each moment equationent on the unit spheras the gradient of the velocityD, the
depends on an infinite set of higher-order moments. In thgotational diffusivity, 5/ ¢ the functional derivative, ané
original work [1], this problem was treated in two steps: =Ao+A; the free energy functional per molecule divided by
First, the Onsager potential was replaced by a different, phesT,
nomenological potential of the Maier-Saupe ty@é¢ which

gives rise to a coupling to the next higher moment only. In Ao=Inv—1+(Iny(u)), (29
the second step, the “decoupling” approximation was used U

to solve the resulting closure problem for the second mo- A2

ment. Subsequent extensive studies were focused on im- A1 2<< 1= (w3, (2b)

provements of the second stgp-6]. At the same time, we
are not aware of improvements on the first step and closurd =2bL?v is the reduced excluded-volumeh 2ndL are the
approximations are limited to the Maier-Saupe potential ugliameter and the length of the rodlike polymeric molecules,
to now. However, it would be desirable to deal with the truerespectively, and' is the number of molecules per unit vol-
Onsager potential, not only because it becomes exact in tHéme. Here and below we use the following notations
limit of low concentrations of perfectly rigid rodlike mol- for averages: (f(u))=/f(u)y(u)du, and ((f(u,w)))
ecules, but also because it contains no phenomenological pa=S J f(u,w) (u) (w)dudw. A, describes the loss of en-
rameters and therefore gives more quantitative predictiongtopy with molecular alignment, whilé, expresses the On-
In addition, the Onsager potential is preferred in the study ofager free energy of steric interaction in the second virial
the influence of flow on the isotropic-nematic transition, approximatior{9]. Following Doi and Edward§10], the ro-
tational diffusivity is approximated by
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whereD,, the rotational diffusion coefficient for a rod in an Z1 ()| ™

isotropic, semidilute solution of like rods, is related to the  ((B(x)))=B({({(x)))+ > —|(—) BEM(((x)))
rotational diffusion constant for a dilute solutioB,,, by m=1 M 2

D,=cD(vL) "2 with an empirical coefficient. Nonlinear- T (5)

ity of Eq. (1) in ¢ brought about by the potentié2b) reflects

the mean-field nature of the Onsager theory of the excludedwvhere 3™ is the 2mth derivative of3 and ellipses denote
volume effect. The self-consistent potential, identified byterms including third or higher-order cumulants as factors.
Doi [10], is related to the free energy of interaction(u)  Therefore, the functionah; (2b) can be split asA;=A{Y
=kgToA1/8y(u). Various phases of the LCP are conve- + B, whereA{" is the free energy, corresponding to the total

niently described by the order parame&t (uu—(1/3)1),  neglect of second and higher-order cumulants in each term of
wherel is the unit tensor. It is reasonable therefore to lookthe expansion,

for approximate formulations of the dynamics in terms of the

order parameter alone. However, as mentioned above, the (1)_U .
time evolution equation fo8 couples to an infinite number A =21 (uu)(uu).
of moments ofy. In the derivation given by Doi, this diffi-

culty was circumvented by replacing the Onsager potentialn terms of the order paramet&f A(ll) may be rewritten as
(2b) by a different, phenomenological expression of theA(ll)z(U/\/E)‘/l—(3/2)S:S. By the mean value theorem, it

(6)

Maier-Saupe typ¢2] is easy to see thaA{!) gives an upper bound té;, A,
<A for the present case of excluded-volume interactions.
AMS—g _ ﬂUS'S (4)  The functionalB contains the higher-order cumulants. While
1 0 -, ; ;
2 all powers of the second cumulants are displayed in(gq.

) in general it is not priori clear whether it is more important
wherea, anda, are parameters independent/afA further 14 keep powers of the second cumulant or higher cumulants.
separate treatment of the diffusivitg) is also necessary. A Hgowever, we generally expect the linear term in the second

compact presentation of the entire development is given byyrger cumulant to be most important. The corresponding
Doi and Edward$10]. The Doi model with the Maier-Saupe tarm m=1 in Eq. (5), AD=(1/2)((x2))cB"({{x))), gives

potential(4) constitutes the basic kinetic model of LCP usedthe first nonvanishing contribution ®,

by many authors for analytical studies to derive equations for '

the order parameter. As is well-known, the kinetic equation U

(1) with the potential4) does not give a closed equation for Af?)=— 1—6<<[(U'W)Z—<UU>1<UU>]2>>(1—<UU>1<UU>)_3/2-
the order parameter but contains also the higher-order mo- @)
ment{uuuu), and therefore constitutes a further problem of

closure. The original Doi approach was based on the decowkeeping only the firsN cumulants in the expansids), the
pling approximation for the fourth-order moments @fin  functional(2b) is approximated by nonlinear functions of the
terms ofS. Improvements on the decoupling approximationfirst 2N moments ofi. Inserting this approximation in the

are currently under active reseaid. time evolution equatiorfl) amounts to an approximation of
the self-consistent Onsager potentiain terms of a polyno-
IIl. GENERATING MOMENT EQUATIONS mial of order N in u but with nonlinear coefficients. In this

) ) approximation, the time evolution of thenth moment con-
In this paper we demonstrate that a different self-tains only the first (2+2N)th moments. With this, moment
consistent treatment of the kinetic equatidn is possible.  equations can be generated that approach the original equa-

Modifications concern only the relaxational part of Ef}),  tions in a systematic way, thereby containing only a finite
specifically, the excluded-volume potenti@b) and the dif-  number of moments at each stage.

fusivity (3), and therefore we consider the cage0 in the

sequel to simplify notations. Specifically, we employ the cu- IV. TESTING THE APPROXIMATION

mulant expansion of the potenti@b) and the diffusivity(3).

The leading term of this expansion results in an effective Clearly, the above procedure is most valuable if the first

potential that differs from the Maier-Saupe potent#l and terms, A", etc., already provide a good approximation to

which contains a nonpolynomial dependence on the ordethe full expressiorA;. While the general validity oA(ll) as

parameterS. a good approximation té\; is a rather delicate problem, it
In the second virial approximation, the free energy of in-should be mentioned that it is so at least in two limiting

teractionA; can be written a#; = (v/2)((8(u,w))). Ifonly  cases. Namely, for the isotropic state, the value\@f dif-

excluded-volume interactions are present, the second virigkrs fromA, for less than 5%, while in the fully ordered state

coefficients corresponding to the Onsager express®in is  the approximatior(6) becomes exact. Moreover, on the sub-

of the form B(u,w)= B[ (u-w)*], with B(x)=2bL*J1-X.  manifold of distribution functions of the form

Specifically, expanding3(x) in a Taylor series and inter-

changing summation and averaging in this expansion, we get @

{B(X)))=Zp_0an{(X")), wherea, are numerical coeffi- %(U):Arwsmha

cients. Each averag€x")) can be represented in terms of

cumulants((x¥)). of orderk<n. Resummation of the series wheren is an arbitrary unit vector, and<9a=<o, the func-

leads to tional A(ll) turns out to approximaté\; very well for all

cosiau-n), (8)
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1.0 V. THERMODYNAMIC CONSISTENCY

It is worth mentioning that the presentation given so far
can easily be cast into the recently developed formalism of
nonequilibrium thermodynamics, called general equation for
the nonequilibrium reversible-irreversible couplingE-
NERIC) [11,12. In the absence of potential forces, the ex-
ample of rigid dumbbells, which are equivalent to the model
of rigid rods, is formulated within the GENERIC formalism
in Ref.[13]. The mean field potentials considered above can
be included in a straightforward manner, if we recognize that
A;=—S;, whereS; is the entropic contribution per mol-
ecule to the free energy of interaction divided ky. For-
mulating the original model as well as the approximations
within the GENERIC formalism guarantees that our treat-
ment is in accordance with the principles of nonequilibrium
thermodynamics. This becomes especially important if the
present model is considered in nonisothermal situations. For
0.0 02 04 0.6 08 1.0 example, the structure of the GENERIC formalism requires
the polymeric contribution to the elastic stress to be
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FIG. 1. Free energy of excluded-volume interaction for distribu- e —3ukaTS. o vkuT uXR— 9
tion functions(8) plotted against the scalar order param&). Tap™ 2Vi81 2ap™ VhB 5¢ ©

From top to bottom: approximatioA(ll) (6), with first correction

AD+AP (7), true Onsager expressiok, (2b), and the Maier-  Equation (9) agrees with the result of Ddil0], obtained
Saupe free energf;™ (4), when the limitsS=0 andS=1 are  ypon varying the free energy functional.
matched. In the inset, the derivative of the above functions is shown
ia;stﬁefusr;:;]tqlZn ofS(a). The order of the curves from top to bottom V. LOWEST ORDER APPROXIMATION
In the sequel, we will adopt the lowest order approxima-
values of the parameter between the isotropic state; ~ tion A=AM=Aq+Af"), whereA{! is given by Eq.(6), and
=0, and the fully ordered state,=. To show this, we plot Ao is given by Eq(2a). This amounts to neglect of all higher
in Fig. 1 the functionsA(a), A{(a), and AY(a) order correlations in Eq5), or, equivalently, settin@3=0.
» SO ! SubstitutingA™® instead ofA into Eq. (1), we deri

+AP(@), what result upon inserting the ans41 into Eqs. ~ >tPsSHUlINGATInstead ofA Into g.(1), we derive
(2b), (6), and (7), respectively. Note thaf\;(«), A(ll)(a), Uuu: (uu)
andA(lz)(a) can be calculated analytically. For convenience, Ip=R- D —) 1 (10)
we plot the functions against the scalar order parameter, de- 21— (uu):(uu)

It is now possible to identify the self-consistent potential as

| RYy— ¥R

fined asS= /(3/2)S:S. Including A{?) does not only reduce
the error of the approximate value Af in the isotropic state

to 1.5%, but improves the accuracy of the approximation UksT| 1 uu:(uu)
over the whole range db. For comparison, we included in v(u)= B ) i ,
Fig. 1 also the free energy)'®, corresponding to the Maier- 2 ] J1—(uu):(uu)
Saupe expressio¥), thereby choosing the undetermined

constant so that the limit of the fully ordered state is matchedvhich can be compared to the expression obtained from in-
correctly. Note, however, that in any casd' decays as- serting the Maier-Saupe free ener@y into Eq. (1),
ymptotically like 1k, for a>1, whereasA; and A{") be-
have like 14/a in this regime. We included in Fig. 1 also the
derivative of the above functions, since they are related to

the self-consistent potenti®l. Figure 1 shows that also the (1)_ 5 1)
derivative ofA(l) provides a good approximation to the de- rium solutions to Eq(10) are eq texil VT,

rivative of A;, with correct limiting behavior near the isotro- The rotational d|ffu5|V|ty(3) 'S related to the free energy

pic and fuIIy ordered state. Note that including the first cor-Of mteractlon sinceD,=D,[8A/(7U)] 2. Substituting
rection A?) yields excellent agreement to the true Onsagef*1= Al gives

prediction. The Maier-Saupe potential captures the main fea- _

tures but, besides an undetermined constant, shows the D{V=(37%32)D[1-(3/2)S:S] *. 13
wrong behavior near the fully ordered state. The an&tz

originally proposed by Onsagg9], is known to approximate The diffusion coeff|C|enID(1) (13) is positive in the entire
the equilibrium distribution very well. Therefore, we con- physically meaningful range of the order parameSerEx-
clude thatA(l) represents a good approximation Aq, at  pression(13) should be compared with the Doi phenomeno-
least on a representative subset of distribution functions. logical result,

(11)

Vus(u)=a,—a;UkgTuu:{uu), 12

wherea, is an arbitrary constant. The normalized equilib-
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1.0

D,p=DJ[1-(3/2S:S] (14)

While we have not found an argument which of the two 081

powers,—1 or —2, is more consistent, it should be stressed
that our derivation of the diffusion coefficient does not need

any further assumptions or adjustable parameters, while the _ '
derivation of Eq.(14) [1,10] requires the matching d,, w’
respectivelyAY | in both the isotropic and the fully ordered 04}
state. Due to its relation t&{?, the diffusion coefficient

DW (13) has a correct limit in the fully ordered state

_ 02+ .
(Dr/D§1)=O as soon a$:S=2/3 in the ordered statewhile
the opposite limit of the isotropic stat®(=D,) is matched . .
within 8%. Again, the first correctiofv) reduces the error in 0.0 1.0 20 3.0
this limit to less than 3%. v/V,

If we adopt(3) and approximat®, by D! (13), the time
evolution of the order paramet&can be derived from Eq.
(10) by the so-called Prager procedure,

FIG. 2. Equilibrium order paramet&,, as a function ofv/v,.
The figure shows the behavior due to the Maier-Saupe potential
(17), lower curve, and the solution @¢1.8) corresponding taA(%),
upper curve, in the decoupling approximation. Solid circles indicate
the order parameter for the true Onsager potential in the static case

(S-{uu)—S:(uuuuy), (from [15]).
(15

!

V1—(3/2)S:S

8,S=—-6DWs+6DW

X £ U 3
_ _ o AD(SU" )= —— —\1-S| 1- —+2S
with U’ =U//6. This expression differs from the result of 2 9 2

Doi [1] not only in the diffusion coefficient and in the re- )

duced excluded-volum# due to the undetermined constant — —arcsinS), (16b

in the Maier-Saupe potenti@l2), but contains a nonpolyno- 6

mial dependence on the order param&gemwhich becomes

important in the nematic state. whereU’=U/+/6. Due to a nonpolynomial character of the

function A (16b), the relaxation equatiofi6a differs for-
mally from the Landau-de Gennes counterpart derived by
Doi for the Maier-Saupe potential. Expansion of the function

We have presented a systematic procedure that allows {360 around S=0 reproduces the result of Doi for the
derive approximate moment equations for the Doi model ofMaier-Saupe potential, subject to a renormalization of the
LCP, which contain only a finite number of higher order _strength of _the excluded-volume potential, and a difference
moments. The first approximation for the Onsager excludedl the coefficient in front of thes* term. Moreover, the re-
volume interaction results in an effective potential) pro- laxation implied byA) (16b) is qualitatively similar to the
portional touu, but different from the Maier-Saupe form ©ne given by Doi result and distinguishes the same three
(12 and without free parameters. We find indications that€gimes. FoJ<U,, A™ has only one minimum =0,

Eq. (11) approximates the true Onsager potential better tha§© that the system finally becomes isotropic. Fby<<U

the Maier-Saupe potential. For higher accuracy, the first cor<<U2, @ second local minimum occurs. The system either
rection seems to be the most important contribution. AllPecomes isotropic or nematic depending on the initial value
these approximations are in accordance with nonequilibriun®f S Finally, for U>U,, the isotropic state becomes un-

thermodynamics. stable and the system always approaches a nematic state.

Note that we have not addressed the problem of solving Due to the undetermined constant in the Maier-Saupe
the resulting kinetic equations or “closing” the moment potential(12), the Doi theory predicts the valués, andU,
equations. This work is currently under preparation. Neveralso in terms ofa;. On the contrary, the self-consistent po-
theless, for comparing Eq15) to the corresponding equa- tential (11) contains no free parameters, so that
tion with the Maier-Saupe potential, we follow Refd,10]  =3"*\/8/(3—1)~6.22 andU,=36~7.34 may directly
and consider the decoupling approximatid®(uuuu)  be compared to the values in the Onsager thedyy-8.38
=S:(uu)(uu). If the order parameter is assumed to be of theandU,=10.67. However, the values of the order parameter
form S, z=S(t)[n,ng— 8,41, the relaxation equation for the S;=1/4 andS,=1/2 atU, respectivelyU in the Doi theory

VII. CONCLUSION

scalar paramete® is found to be as follows: do not depend om; and can therefore be compared to the
values predicted by Eq11): S;=(\/3—1)/2~0.37 andS,
" , :1/@%0.71. o '
e —65(1)(% (SU’) (16 In Fig. 2, the equilibrium order paramet8g, is shown as
r S ' a function ofv/v,. The lower solid line shows the prediction
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of the Doi theory, whereas the upper solid line correspondsmaller in the Maier-Saupe theory than in the Onsager
to the approximation(11). For the Maier-Saupe potential, model. For comparison, we included in Fig. 2 the values of

Seq# 0 is given by the order parameter obtained from minimizing the true On-
sager free energy numericall{L5], where v, now corre-

S ZEJF § 1— % (17) sponds to the true nematic transition. Although the analysis
eq \/ . . X . :

4 4 3v of the phase transitions via the dynamical approach is af-

o o fected by the use of the decoupling approximation, the pre-
For the free energyl16b), Sqis given implicitly as the so-  giction of the self-consistent approach is much closer to the

lution to the algebraic equation true Onsager values than is the Maier-Saupe potential. Fi-
5 nally, it should be mentioned that approximations to the On-
1+ Seq™ ZSquQ (19  Sager potential such as Ed§) and(7) can also be used in

J1— qu the case of potential flows, following the approach of Thiru-
malai[7] without additional assumptions.

For large values of/v,, the solution(18) approaches the To summarize, we have developed a direct approach to
valueS,q=1 and asymptotically behaves like the solution ofthe Doi model with the Onsager potential. We have demon-
the Doi theoryS,~1—v,/v, for largev. Note that the de- strated that the resulting kinetic equation has much in com-
coupling approximation corrects the asymptotic behavior ofmon with the Doi model with the phenomenological Maier-
the Maier-Saupe potential near the fully ordered state. Saupe potential. Corrections to the approximation developed

As is well-known, the detailed form of the interaction here can be found in a systematic way from EH&$-(7) by
potential can have a significant effect on the behavior of theéaking into account higher order correlations. The approach
order parameter in the nematic phddd|. Specifically, the to derive self-consistent moment equations is applicable to
amount of order at the transition is known to be muchother kinetic equations which can be cast into the fdtn
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